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SUMMARY 
A unified theory of non-oscillatory finite volume schemes for both structured and unstructured meshes is 
developed in two parts. In the first part, a theory of local extremum diminishing (LED) and essentially local 
extremum diminishing (ELED) schemes is developed for scalar conservation laws. This leads to symmetric 
and upstream limited positive (SLIP and USLIP) schemes which can be formulated on either structured or 
unstructured meshes. The second part examines the application of similar ideas to the treatment of systems 
of conservation laws. An analysis of discrete shock structure leads to conditions on the numerical flux such 
that stationary discrete shocks can contain a single interior point. The simplest formulation which meets 
these conditions is a convective upwind and split pressure (CUSP) scheme, in which the coefficient of the 
pressure differences is fully determined by the coefficient of convective diffusion. Numerical results are 
presmted which confirm the properties of these schemes. 
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1. INTRODUCTION 

This paper presents a unified formulation of non-oscillatory discretization schemes for the 
calculation of compressible flows on both structured and unstructured meshes. Over the past 
decade the principles underlying the design of non-oscillatory discretization schemes have been 
quite well established, and numerous variations of artificial diffusion, upwind biasing and flux 
splitting have been proposed and tested.' - * The non-oscillatory properties of the schemes 
analysed here are secured through the introduction of artificial viscosity which produces an 
upwind bias. This exactly reproduces an upwind scheme when the minimum sufficient amount of 
viscosity is used. Higher-order accuracy is obtained by the use of higher-order diffusive terms, 
with limiters to preserve monotonicity constraints. Schemes which blend low and high-order 
diffusion,' and both symmetric and upstream constructions using anti-diffusive terms controlled 
by limiters,' are readily included within the framework of this paper. 

Two main issues arise in the design of non-oscillatory discrete schemes. First there is the issue 
of how to construct an approximation to a scalar convection or convection-diffusion equation 
which is non-oscillatory, captures discontinuities with high resolution, and is sufficiently accurate. 
Second there is the issue of how to construct a numerical flux for a system of equations with waves 
travelling at different speeds, and sometimes in opposite directions. These two issues can be 
treated essentially independently, and by combining alternative non-oscillatory formulations 
with different constructions of the numerical flux one arrives at a matrix of candidate high- 
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resolution schemes, all of which may have acceptable characteristics. Reference 10 examines the 
performance of such a matrix of schemes for viscous boundary layers. 

Section 2 reviews the conditions for the construction of non-oscillatory schemes for scalar 
conservation laws. Following a line adhered to in a number of works,"-'4 including several by 
the present a u t h ~ r , ' ~ ' ' ' ' ~  it is suggested that the principle of non-increasing maxima and 
non-decreasing minima provides a convenient criterion for the design of non-oscillatory schemes. 
This principle contains the concept of total variation diminishing (TVD) schemes for one- 
dimensional problems, but can readily be applied to multi-dimensional problems with both 
structured and unstructured grids. Such local extremum diminishing (LED) schemes can be 
realized by making sure that the coefficients of the discrete approximation are non-negative. 
First-order accurate schemes satisfying this principle are easily constructed, but are too diffusive. 
It is well known that schemes which strictly satisfy the LED principle fall back to first-order 
accuracy at extrema even when they realize higher-order accuracy elsewhere. This difficulty can 
be circumvented by relaxing the LED requirement. Therefore, the concept of essentially local 
extremum diminishing (ELED) schemes is introduced. These are schemes for which, in the limit as 
the mesh width Ax -+ 0, maxima are non-increasing and minima are non-decreasing. 

One approach to the construction of high-resolution schemes which combine monotonicity 
and higher-order accuracy is to blend low- and high-order diffusive terms as, for example, in the 
Jameson-Schmidt-Turkel (JST) scheme.' Another approach which has been adopted by several 

used here to derive a general family of symmetric limited positive (SLIP) schemes for both 
structured and unstructured meshes which are LED. Moreover, the limiter can be softened to 
produce an ELED scheme which preserves second-order accuracy at smooth extrema. It is also 
shown that the switch in the JST scheme between the low- and high-order diffusive terms can be 
formulated in such a way that the JST scheme is exactly equivalent to a SLIP scheme. A slight 
modification of the SLIP-formulation produces a corresponding family of upstream limited 
positive (USLIP) schemes, which resemble some well-known upwind schemes.". 

Section 3 discusses the treatment of systems of equations with several dependent variables. In 
order to apply the local extremum diminishing (LED) principle, the flux may be split in a manner 
which corresponds to the characteristic fields, so that the scheme is designed to limit extrema of 
the characteristic variables. The Roe flux4 provides a way to produce schemes that resolve 
stationary shock waves with a single interior point. The use of a scalar diffusive flux constructed 
directly from the solution variables leads to simpler schemes which can resolve shock waves with 
several interior points, and exhibit no overshoots provided that enough diffusion is introduced 
locally. Because of their low computational costs, scalar diffusive schemes have proved quite 
suitable for industrial use, and they have been successfully used for aerodynamic analysis in the 
design of aircraft such as the YF-23.21 They have the drawback that in order to stabilize the 
calculation, they tend to introduce more diffusion than is really needed. A formulation of 
intermediate complexity is to form artificial diffusive terms from a combination of differences of 
the state and flux vectors. In order to evaluate the shock capturing properties of these various 
schemes the structure of discrete stationary shocks is analysed, and it is shown that perfect 
stationary discrete shocks with a single interior point can be obtained both by characteristic 
decomposition, and by schemes combining differences of the state and flux vectors. These simpler 
schemes can be formulated by distinguishing the convective and pressure terms, and augmenting 
each group of terms separately with upwind biasing or diffusive terms. Such convective upwind 
and split pressure (CUSP) schemes are closely related to the Liou-Steffen flux splitting" and also 
the wave particle splitting proposed by Deshpande and c o - ~ o r k e r s . ~ ~ * ' ~  Scalar diffusion in the 
right amount, with a coefficient proportional to the minimum eigenvalue of the Jacobian matrix 

authors12, 1 7  - 19 is . to add limited anti-diffusive terms to a lower-order scheme. This procedure is 
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of the flux vector, produces very sharp discrete shocks, but they are not perfectly free of 
oscillations. 

2. NON-OSCILLATORY SCHEMES FOR SCALAR EQUATIONS 

2.1. Local extremum diminishing (LED)and essentially local extremum diminishing (ELED)schemes 

Consider the discretization of a time-dependent conservation law such as 

au a a 
- + - f (u)  + - g(u) = 0 
at ax a Y  

for a scalar-dependent variable u on an arbitrary (possibly unstructured) mesh. Assuming that the 
mesh points are numbered in some way, let uj  be the value at mesh point j. Suppose that the 
approximation to (1) is expressed in semi-discrete form as 

Then on introducing Taylor series expansions for u(xk - xj,y, - yj) it follows that in the absence 
of a source term 

Thus, there is no loss of generality in writing the scheme as 

Suppose that the coefficients are non-negative, 

Cjk 2 0, k # j  ( 2 )  

Then the scheme is stable in the L, norm, since if uj  is a maximum, vk - uj  < 0, so that duj/dt < 0, 
and similarly a minimum cannot decrease. Suppose, moreover, that the stencil of the discrete 
scheme is compact, 

cjk = 0 if j and k are not nearest neighbours (3) 

Then if uj  is a local maximum (over the stencil of the difference scheme) u k  - uj < 0, with the 
consequence that duj/dt < 0. Thus, a local maximum cannot increase, and similarly a local 
minimum cannot decrease. Such a scheme will be called local extremum diminishing (LED). 

This criterion has been proposed by various authors"*8*25'13,12 as a convenient basis for the 
construction of non-oscillatory schemes on both structured and unstructured meshes. It assures 
positivity, because if u is everywhere positive, then its global minimum is positive, and this cannot 
decrease. When specialized to one dimension it also leads to the class of total variation 
diminishing (TVD) schemes proposed by Harten.6 The total variation of v is 

that is the sum of the absolute values of the variation over each upward and downward segment. 
It was observed by Laney and CaugheyI3 that each extremum appears in the variation of the 
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segment on each side of that extremum, with the consequence that 

TV(v) = 2( xmaxima - xminima) 

if the end values are fixed. Thus, if a one-dimensional scheme is LED, it is also TVD. On 
a triangular mesh, a definition of total variation such as 

TV(u) = IIVUII dS 

is not an entirely satisfactory measure of oscillation. This is illustrated in Figure 1, where the total 
variation of two peaks is found to be less than that of a single ridge. The LED principle, however, 
continues to be useful for multidimensional problems on both structured and unstructured 
meshes. Positivity conditions of the type expressed in equations (2) and (3) lead to diagonally 
dominant schemes, and are the key to the elimination of improper oscillations. The positivity 
conditions may be realized by the introduction of diffusive terms, or by the use of upwind biasing 
in the discrete scheme. Unfortunately, they may also lead to severe restrictions on accuracy, 
unless the coefficients have a complex non-linear dependence on the solution. 

Following the pioneering work of Godunov,26 a variety of dissipative and upwind schemes 
designed to have good shock capturing properties have been developed during the past two 
decades.2-7f11.17* 19*20*27-31 If the one-dimensional scalar conservation law 

s 

av a 
at 
- + ax f(v) = 0 

is represented by a three-point scheme 

dvj 
dt 
- = c;+ l,Z(Uj+ 1 - U j )  + c j -  1,2(Vj- 1 - V j )  

the scheme is LED if 

(a) 

c;+1,2 2 0, cj-1,2 3 0 

1 
c-) 

0 0 0  0 

1" 
0 

0 0 0  0 

(4) 

0 0 0 0  

0 (Yp& 0 

0 0 0  0 (b) 

Figure 1. Breakdown of TVD the one ridge case is less oscillatory than the two peaks case(a) Two Peaks: TV = 4 + 2$ 
(&), 6 (L2) ,  or 2 + 2,,6 (.Lm). (b) One Ridge: TV = 6 + ,,6(L,), 7 (L2) ,  or 5 + 3,,6 (&). 
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A conservative semidiscrete approximation to the one-dimensional conservation law can be 
derived by subdividing the line into cells. Then the evolution of the value u j  in the j th  cell is given 
by 

where hj+liz is an estimate of the flux between cells j and j + 1. The simplest estimate is the 
arithmetic average ( f j+ l  +fj)/2, but this leads to a scheme that does not satisfy the positivity 
conditions. To correct this, one may add a dissipative term and set 

hj+ 112 = 3(fj+ 1 +fj) - aj+ 1/2(uj+ 1 - uj)  
In order to estimate the required value of the coefficient aj+ 1/2, let a j +  1/2 be a numerical estimate 
of the wave speed aflau, 

This is the least diffusive first-order scheme which satisfies the LED condition. In this sense, 
upwinding is a natural approach to the construction of non-oscillatory schemes. 

Another important requirement of discrete schemes is that they should exclude non-physical 
solutions which do not satisfy appropriate entropy  condition^,^^ which require the convergence 
of characteristics towards admissible discontinuities. This places more stringent bounds on the 
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minimum level of numerical v i s ~ o s i t y . ~ ~ - ~ ~  In the case that the numerical flux function is strictly 
convex, Also3’ has recently proved that it is sufficient that 

“ j + l / Z  >max{+Iaj+1/2I, ESign(uj+l - u j ) }  

for E > 0. Thus, the numerical viscosity should be rounded out and not allowed to reach zero at  
a point where the wave speed a(u) = df/au approaches zero. This justifies, for example, Harten’s 
entropy fix. 

Higher-order schemes can be constructed by introducing higher-order diffusive terms. Unfor- 
tunately, these have larger stencils and coefficients of varying sign which are not compatible with 
the conditions (2) for a LED scheme, and it is known that schemes which satisfy these conditions 
are at best first-order accurate in the neighbourhood of an extremum. It proves useful in the 
following development to introduce the concept of essentially local extremum diminishing 
(ELED) schemes. These are defined to be schemes which satisfy the condition that in the limit as 
the mesh width Ax + 0, local maxima are non-increasing, and local minima are non-decreasing. 

2.2. High-resolution switched schemes: Jameson-Schmidt- Turkel (JST) scheme 

Higher-order non-oscillatory schemes can be derived by introducing anti-diffusive terms in 
a controlled manner. An early attempt to produce a high-resolution scheme by this approach is 
the Jameson-Schmidt-Turkel (JST) scheme.’ Suppose that anti-diffusive terms are introduced 
by subtracting neighbouring differences to produce a third-order diffusive flux, 

dj+ 1/2  = “j+ l / Z  {Auj+ 1/2 - i ( A u j + 3 / 2  + Ayj- 1/2) )  (9) 

which is an approximation to &Ax3a3/ax3. The positivity condition (2) is violated by this 
scheme, which proves that it generates substantial oscillations in the vicinity of shock waves. 
These can be eliminated by switching locally to the first-order scheme. The JST scheme therefore 
introduces blended diffusion of the form 

dj+l/2 = ~?!1/2Auj+1/2 - & 2 1 / 2 ( A U j + 3 / 2  - 2Avj+1/2 + Auj- l /2)  (10) 

The idea is to use variable coefficients E Y + ) ~ / ~  and which produce a low level of diffusion in 
regions where the solution is smooth, but prevent oscillations near discontinuities. If E:+) l j z  is 
constructed so that it is of order Ax2 where the solution is smooth, while E ? ~ / ~  is of order unity, 
both terms in dj+l /2  will be oforder Ax3. 

The JST scheme has proved very effective in practive in numerous calculations of complex 
steady flows, and conditions under which it could be a total variation diminishing (TVD) scheme 
have been examined by Swanson and T ~ r k e l . ~ ~  An alternative statement of sufficient conditions 
on the coefficients E ? + ) ~ , ~  and E F ~ / ~  for the JST scheme to be LED is as follows. 

Theorem I (Positivity of the JST scheme): Suppose that whenever either uj+ or u j  is an extremum 
the coejicients of the JST scheme satisfy 

Then the JST scheme is local extremum diminishing (LED).  

extremum. Then 
Proof: We need only consider the rate of change of u at extremal points. Suppose that uj is an 

(4) (4) 
E j i l l 2  = E j - 1 , ~  = O  
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and the semi-discrete scheme (6) reduces to 

and each coefficient has the required sign. 

In order to construct ~ y ? ~ ~ ~  and ~ p ~ / ~  with the desired properties define 

where q is a positive integer. Then R(u, u)  = 
Now set 

Q j  = R(Avj+ 1 / 2 7  Auj 

and 

if u = v = O  

0 

if u and u have opposite signs; otherwise R(u, v )  < 1 .  

(13) (2) (4 )  
~ j t  1/2  = aj+ 1 / 2 Q j +  1/27 E j +  112 = B j +  1 /2 (1  - Q j +  1/2)  

where 
aj+1/2 2 tiaj+l/2Ir B j + l / z  is ~ r o ~ o r t i o n a l  to laj+lizl 

At an extremum, Qj = 1, since then Auj+ 1,2 and Auj- 112 have opposite signs. Elsewhere, Q j  d 1 
and is of order Ax if the solution is smooth. Thus, the conditions (1 1) for a LED scheme are 
satisfied, and if q 2 2, ~ ~ 2 + ) ~ , ~  is of order Ax2 in smooth regions not containing an extremum. 

2.3. Symmetric limited positive (SLIP) scheme 

An alternative route to high resolution without oscillation is to introduce flux limiters to 
guarantee the satisfaction of the positivity condition (2). The use of limiters dates back to the work 
of Boris and Book.' A particularly simple way to introduce limiters, proposed by the author17 in 
1984, is to use flux limited dissipation. In this scheme the third-order diffusion defined by 
equation (9) is modified by the insertion of limiters which produce an equivalent three-point 
scheme with positive coefficients. The original scheme'' can be improved in the following manner 
so that less restrictive flux limiters are required. Let L(u, u) be a limited average of u and u with the 
following properties: 

(P1) L(u, 0) = m, 4, 
(P2) L(au, O1u) = O1L(u, u), 
(P3) L(u, u) = u, 
(P4) L(u, v )  = 0 if u and u have opposite signs; otherwise, L(u, u) has the same sign as u and u. 

Properties (Pl)-(P3) are natural properties of an average. Property (P4) is needed for the 
construction of a LED or TVD scheme. 

It is convenient to introduce the notation 

$ ( I )  = L( 1 ,  r) = L(r,  1) 

where according to (P4), $(r)  0. Tt follows from (P2) on setting 01 = l/u or l / v  that 

L(u, u) = Q( e). = o( ;). 
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Also it follows on setting v = 1 and u = r that 

Thus, if there exists r < 0 for which 4 ( r )  > 0,. then +(l/r) < 0. The only way to ensure that 
4 ( r )  2 0 is to require 4 ( r )  = 0 for all r < 0, corresponding to property (P4). 

Now one defines the diffusive flux for a scalar conservation law as 

d j +  112 = aj+ 112 {Avj+  112 - L ( A v j + 3 / 2 ,  Avj- 1 / 2 ) }  (14) 

Also define 

Then, the scalar scheme (6) reduces to 

- E j -  l / z ( A u j -  1 / 2  - 4 ( r - ) A u j +  1 / 2 1  

= { a j + 1 / 2  - f a j + 1 / 2  + ~ j - l / 2 4 ( r - ) } A u j + 1 / 2  

- {a j -  112 + f aj- 112 + aj+ l / z b ( r +  ) ) A v j -  1 / 2  (15) 

Thus, the scheme satisfies the LED condition if aj+  1 / 2  2 : la j+ l12J for allj, and 4 ( r )  2 0, which is 
assured by property (P4) on L. At the same time it follows from property (P3) that the first-order 
diffusive flux is cancelled when Av is smoothly varying and of constant sign. Schemes constructed 
by this formulation will be referred to as symmetric limited positive (SLIP) schemes. A variation 
is to include the coefficient a j+  l j z  in the limited average by setting 

d j + l / 2  = a j + i / 2 A u j + i / z  - L ( a j + 3 / ~ A u j + 3 / 2 ,  a j -1 /2Av j -1 /2 )  (16) 

It is easily verified that the argument remains valid. These results may be summarized as follows. 
Theorem 2 (Positivity of the SLIP scheme). Suppose that the discrete conservation law (6) 

contains a limited difusivepux as dejned by equations (14) or (16). Then the positivity condition (8), 
together with the properties (Pl)-(P4) for limited averages, are suficient to ensure satisfaction of the 
LED principle that a local maximum cannot increase and a local minimum cannot decrease. 

The construction benefits from the fact that the terms involving 4 ( r - )  and 4 ( r + )  reinforce the 
positivity of the coefficients whenever 4 is positive. Thus, the only major restriction on L(u, v )  is 
that it must be zero when u and u have opposite signs, or that @(r)  = 0 when r < 0. If Avj+ 312 and 
A v j -  l j z  have opposite signs then there is an extremum at either j or j + 1.  In the case of an 
odd-even mode, however, they have the same sign, which is opposite to that of Avj+ 112,  so that 
they reinforce the damping in the same way that a simple central fourth difference formula would. 
At the crest of a shock, if the upstream flow is constant then A u j - 1 / 2  = 0, and thus A ~ j + 3 / 2  is 
prevented from cancelling any part of Avj+ 1 / 2  because it is limited by Avj-  112. 

A variety of limiters may be defined which meet the requirements of properties (Pl)-(P4). 
Define 

S(u, u) = f {sign (u) + sign (u ) }  



POSITIVE SCHEMES AND SHOCK MODELLING 75 1 

so that 
1 if u > O  and u > O  
0 

- 1  if u < O  and u < O  
if u and u have opposite sign 

Then two limiters which are appropriate are the following well-known schemes 
1. Minmod: 

L(u,  0) = S(u, u)min(lul, Iul) 

2. Van Leer: 

In order to produce a family of limiters which contains these as special cases it is convenient to set 

L(u,  u)  = @(u, u)(u + u) 

where D(u, u) is a factor which should deflate the arithmetic average, and become zero if u and 
u have opposite signs. Take 

u - u  
D(u, U) = 1 - R(u, V )  = 1 - ~ 

llul + lull 

where R(u, u) is the same function that was introduced in the JST scheme, and q is a positive 
integer. Then D(u, u)  = 0 if u and u have opposite signs. Also if q = 1, L(u, u) reduces to minmod, 
while if q = 2, L(u,  u) is equivalent to Van Leer's limiter. By increasing q one can generate 
a sequence of limited averages which approach a limit defined by the arithmetic mean truncated 
to zero when u and v have opposite signs. When the ratio I = u/u is extreme the limiter 
approaches the asymptotic value 

4 ( r )  = L(1, r)  -, q as r -, co 
When the terms are regrouped, it can be seen that with this limiter the SLIP scheme is exactly 
equivalent to the JST scheme, with the switch is defined as 

Q j + 1 / 2  = R ( A u j + 3 / 2 9  A u j + 1 / 2 )  

~ ? ! 1 / 2  = u j +  1 / 2 Q j +  112 

~ Z 4 + ) 1 / 2  = U j +  1 / 2 ( 1  - Q j +  I/Z) 

This formulation thus unifies the JST and SLIP schemes. 

2.4. Essentially local extremum diminishing (ELED) scheme with soji limiter 

The limiters defined by the formula (17) have the disadvantage that they are active at a smooth 
extrema, reducing the local accuracy of the scheme to first order. In order to prevent this, the 
SLIP scheme can be relaxed to give an essentially local extremum diminishing (ELED) scheme 
which is second-order accurate at smooth extrema by the introduction of a threshold in the 
limited average. Therefore, redefine D(u, u)  as 

max(lu1 + IuI, EAx') 
D(u,  u)  = 1 - 
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where r = t ,  q > 2. This reduces to the previous definition if IuI + IuI > &Axr. Now 

d j +  112 = aj+ l / z  {Auj+l /2  - )Dj+1/2(Avj+3/2 + Auj-l /2)}  

where 

Dj+ 1/2 = D(Avj+3/2? Avj- l /2))  

In any region where the solution is smooth A ~ j + 3 / 2  - Avj- l i z  is of order Ax'. In fact, if there is 
a smooth extremum in the neighbourhood of uj  or v j +  1, a Taylor series expansion indicates that 
Avj+ 3/2 ,  Avj+ 112 and Avj- 1 /2  are each individually of order Ax2, since dvldx = 0 at the extremum. 
Then Dj+1/2 = 1 - A where A is of order Ax4/', and 

d j + l / 2  = aj+l /2(Auj+l/2 - & A u j + 3 / 2  - i A V j - 1 / 2 )  + aj+1/2A(Auj+3/2 + AVj-1/2) 

where the first term is order Ax3 and the second of order Therefore, taking q > 2 is 
sufficient to ensure at least second-order accuracy at a smooth extremum. 

Consider now the possible growth of the extrema. Suppose that uj is a maximum, and that 
A0j+3 /2  has the opposite sign to Avj-l/2,  while Avj-312 has the opposite sign to Then 
either Dj+ 1,2 = 0 or IAoj+ 312 I < &AX' and IAvj- 1 /2  I < &Axr. Similarly either Dj- 1 /2  = 0, or 
IAuj+1321 < &AX' and IAvj-3/21 < &Axr. Now 

1 1 
- ( a j - l / Z  + T a j +  1/2Dj+ 1/2 + zaj-  1/2)Auj-  1/2 

- T ~ ~ + I / Z D ~ + I / Z A ~ ~ + ~ / Z  + Taj-ljzDj- 1 / 2 A ~ j - 3 / 2  
1 1 

where 0 d Dj+ l l z  d 1 and 0 d Dj- 1/2  d 1, and since uj  is a maximum Auj+ 112 d 0, Auj- 112 3 0. It 
follows that 

If, on the other hand Auj+3/Z has the same sign as Auj-ljz,  it produces a negative contribution to 
duj/dt. In any case, therefore, if uj  is a maximum dvj/dt d B, and similarly if uj  is a minimum 
dvj/dt 3 - B, where B -+ 0 as Ax -+ 0 as long as r > 1. Thus, the SLIP scheme with the limiter 
(17) is essentially local extremum diminishing (ELED). 

The effect of the 'soft limiter' is not only to improve the accuracy: the introduction of 
a threshold below which extrema of small amplitude are accepted also usually results in a faster 
rate of convergence to a steady state, and decreases the likelihood of limit cycles in which the 
limiter interacts unfavourably with the corrections produced by the updating scheme. In a scheme 
recently proposed by Venkatakrishnan a threshold is introduced precisely for the purpose.39 

2.5. SLIP schemes on multi-dimensional unstructured meshes 

Consider the discretization of the scalar conservation law (1) by a scheme in which v is 
represented at the vertices of a triangular mesh, as sketched in Figure 2. In a finite volume 
approximation, (1) is written in integral form as 

(f(0) dy - g(u)dx) = 0 
dt 
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2 

I 

3@ 4 5 

Figure 2. Cell surrounding vertex o 

and this is approximated by trapezoidal integration around a polygon consisting of the triangles 
with a common vertex, 0, say. 

Thus, (1) is discretized as 

where fk = f ( u k ) ,  g k  = g(vk) ,  s is the area of the polygon, and k ranges over its vertices. This may 
be rearranged as 

where 

Axk = t ( x k +  1 - x k -  1 1 3  A Y k  = !Z(Yk+ 1 - Y k  - 1 

Following, for example, References 15 and 25, this may now be reduced to a sum of differences 
over the edges ko by noting that C k  Axk = CkAyk  = 0. Consequently f o  and go may be added to 
give 

Define the coefficients ako as 

and 

Auko = vk - 0, 

Then equation (19) reduces to 
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To produce a scheme satisfying the sign condition (2), add a dissipative term on the right-hand 
side of the form 

Clko Avko 
k 

where the coefficients Uko satisfy the condition 

Rko 3 lukol 

These simple schemes are far too dissipative. Anti-diffusive terms may be added without 
violating the positivity condition (2)  by the following generalization of the one-dimensional 
scheme. Considering again the scalar case, let Iko be the vector connecting the edge ko and define 
the neighbouring differences 

A +  Uko = lko ' v +  0, A -  Vko = Iko ' v - u 

where V ' u are the gradients of u evaluated in the triangles out of which and into which Iko points, 
as sketched in Figure 3. Arminjon and Dervieux4' have used a similar definition. 

It may now be verified that 

A t U k o  = &pk(up - u k )  + Eqk(Vq - u k )  

and 

where the coefficients Epk,  Eqk, E,, and E,, are all non-negative. Now define the diffusive term for the 
edge ko as 

A-uko = ~ o r ( u o  - O r )  + ~o.v(uo - 0 s )  

d k o  = Clko{AUko - L ( A + v k o ,  A - u k o ) )  (22) 
where L(u, u)  is a limited average with the properties (Pl)-(P4) that were defined in Section 2.3. In 
considering the sum of the terms at the vertex o write 

L ( A + u k o ,  A - u k o )  = 4 ( r k + o ) A - u k o ,  

where 

S 

P 

Figure 3. Edge ko and adjacent triangles 
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Then, since the coefficients E,, and E,, are non-negative, and &&) is non-negative, the limited 
antidiffusive term in (22) produces a contribution from every edge which reinforces the positivity 
condition (2). Similarly, in considering the sum of.the terms at k one writes 

L(A+vko, A - u k o )  = 6(rko)A+uko 
where 

and again the discrete equation receives a contribution with the right sign. One may therefore 
deduce the following result. 

Theorem 3 (Positivity theorem for unstructured meshes), Suppose that the discrete conservation 
law (19) is augmented b y j u x  limited dissipation following equations (20) and (22). Then the positivity 
condition (21), together with the properties (Pl)-(P4) for limited averages, are suficient to ensure the 
LED property at every interior mesh point. 

Note also that if this construction is applied to any linear function u then 

Auko = A+ Vko  = A-Vko 

with the consequence that the contribution of the diffusive terms is exactly zero. In the case of 
a smoothly varying function u, suppose that I k 0 . v ~  # 0 and the limiter is smooth in the 
neighbourhood of r& = 1. Then substitution of a Taylor series expansion indicates that the 
magnitude of the diffusive flux will be of second order. At an extremum the anti-diffusive term is 
cut off and the diffusive flux is of first order. 

2.6. Upstream limited positive (USLIP) schemes 

By adding the anti-diffusive correction purely from the upstream side one may derive a family 
of upstream limited positive (USLIP) schemes. Corresponding to the original SLIP scheme 
defined by equation (14), a USLIP scheme is obtained by setting 

1 if a j + 1 / 2  < 0. If crj+l j2  = ~ ( a ~ + ~ / ~ (  one recovers a standard high-resolution upwind scheme in 
semi-discrete form. Consider the case that a j+1 /2  > 0 and a j - l j 2  > 0. If one sets 

the scheme reduces to 

To assure the correct sign to satisfy the LED criterion the flux limiter must now satisfy the 
additional constraint that 4 ( r )  < 2. 
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The USLIP construction can also be implemented on an unstructured mesh by taking 

d k o  = I a k o I ( A v k o  - L ( A v k o ,  A - u k o ) }  

if a k o  > 0 and 

d k o  = I a k o I { A U k o  - L ( A v k o ,  A + u k o ) }  

if a k o  < 0. Let 1 + and 1- denote sums over the edges meeting at the vertex o for which a k o  > 0 
and a k o  < 0. Define 

+ A u k 0  - A + u k o  
9 r k o  = - r k o  = ~ 

A - vko Avko 

Then 

dv 
dt 

s 2 =  - 

and substituting the formula for A-vko the coefficient of every difference Avko is found to be 
non-negative, with the consequence that the scheme is LED. 

3. SYSTEMS OF CONSERVATION LAWS 

In order to apply similar ideas to a system of equations one may split the flux into components 
corresponding to the different wave speeds. This concept was first proposed by Steger and 
Warming.2 Roe's4 flux difference splitting is a particularly effective formulation. Consider the 
one-dimensional case, which may be written in vector notation as 

aw a 
- + - f (w) = 0 
at ax 

where w is the vector of dependent variables, and f(w) is the flux vector. As in the scalar case, 
equation (23) may be discretized in finite volume form as 

where hj+ 1 / 2  is the numerical flux through the interface between cells j and j + 1. This may be 
expressed as 

where f, denotes f(wj), and d j +  1,2 is the diffusive flux. 
The wave speeds of the system (23) are the eigenvalues of the Jacobian matrix aflaw. Following 

Roe,4 the equations may be locally linearized by introducing a matrix Aj+lj2 depending on the 
states w j + l  and wj  such that 

(25) 1 
hj+ 1/2 = dfj+ 1 - f j  1 - dj+ 112 

f j +  1 -fj = Aj+ 1/2(wj+ I - wj) (26) 
This corresponds to the definition (7) of a j+  1/2 in the scalar case. On introducing the vector 
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all quantities in both f and w are products of the form vG)dk' which have the property that a finite 
difference A(v(j)dk)) between left and right states can be expressed as 

A(u(j)u(k)) = fi(j)AU(k) + p A U ( j )  

where IP is the arithmetic mean i ( v g )  + v!)). Therefore, 

AW = BAv, Af = CAU = CB-'AW 

where B and C can be expressed in terms of appropriate mean values of the quantities vci). This is 
equivalent to evaluating the standard form of the Jacobian matrix A = d J d w  using the weighted 
averages 

(27) &uR f &uL , H =  &HR + &HL 
U =  

&+& &+& 
and 

c = ,/(y - 1)(H - u2/2) (28) 

A splitting according to characteristic fields is obtained by decomposing Aj+ 112 as 

Aj+112 = TAT-' 

where the columns of Tare the eigenvectors of Aj+l12, and A is a diagonal matrix containing the 
eigenvalues. Now define a first-order diffusive flux as 

dj+1/2 = i IAj+1 /2I (wj+ l  - wj) (29) 

where 

IAj+1/2I = TIAIT-' 

and 1A1 is the diagonal matrix containing the absolute values of the eigenvalues. The flux 
differences can then be expressed as 

hj+ 1/2 - hj- 112 = (&+ 1 -&I- + (5 -.I- I ) +  

where the split flux differences 

( & + I  -&I* =+T(A f lAt )T- ' (wj+ l  - wj) 

correspond to the left and right going waves. In order to produce a higher-order SLIP scheme the 
SLIP construction is applied to the characteristic differences 

Auj+ 1/2 = T;?1/2(wj+ I - Wj) 

Then using superscripts k to denote the kth element of Auj+ 1 /2 ,  define 

e7ilI2 = ~ X ' { A U ~ ! ~ / ~  - L ( A v ~ ~ ~ ~ ~ ,  A V ~ ! ~ ~ ~ ) }  

where 
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Then 
d j +  1/2 = Ti+ i / z e j +  1 / 2  

is replaced by I ( k )  to preserve a small amount of diffusion when A ( k )  = 0, otherwise, the 
scheme would support stationary expansion shocks. 

3.1. Alternative splittings 

Characteristic splitting has the advantages that it introduces the minimum amount of diffusion 
to exclude the growth of local extrema of the characteristic variables, and that with the Roe 
linearization it allows a discrete shock structure with a single interior point. To reduce the 
computational complexity one may replace I A I by CI. If CI is at least equal to the spectral radius 
max I A(A)I, the positivity conditions will still be satisfied. Then the first-order scheme simply has 
the scalar diffusive flux 

dj+ I / Z  = aj+ 1/2Awj+ 112 

The JST scheme with scalar diffusive flux captures shock waves with about 3 interior points, and 
it has been widely used for transonic flow calculations because it is both robust and computation- 
ally inexpensive. 

An intermediate class of schemes can be formulated by defining the first-order diffusive flux as 
a combination of differences of the state and flux vectors 

Schemes of this class are fully upwind in supersonic flow if one takes C I ~ + ~ ~ ~  = 0 and 
j l j+liz = sign(M) when the absolute value of the Mach number M exceeds 1. The flux vector 
f can be decomposed as 

f =  uw + f p  (30) 
where 

Then 

fj+ 1 -fj = u(wj+ 1 - wj)  + w(uj+ 1 - uj)  + f p , + ,  - f p ,  (32) 
where U and W are the arithmetic averages 

u = Z ( U j +  1 1 + U j ) ,  w = i ( W j +  1 + W j )  

Thus, these schemes are closely related to schemes which introduce separate splittings of the 
convective and pressure terms, such as the wave-particle scheme, and the AUSM and CUSP 
~chemes .~  - 2 4 9  

In order to examine the shock capturing properties of these various schemes, consider the 
general case of a first-order diffusive flux of the form 

(33) 
where the matrix B j +  1 / 2  determines the properties of the scheme and the scaling factor c l j +  l jz  is 
included for convenience. All the previous schemes can be obtained by representing B j +  1/2  as 

1 
d j+  1 / 2  = T E j +  1/2Bj+ 1/2(wj+ 1 - wj)  
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a polynomial in the matrix A,+ 1/2 defined by equation (26). According to the Cayley-Hamilton 
theorem, a matrix satisfies its own characteristic equation. Therefore, the third and higher powers 
of A can be eliminated, and there is no loss of generality in limiting Bj+  1/2 to a polynomial of 
degree 2, 

Bj+l/z = aof  + a1Aj+ljz  + ~ Z A ? + I / Z  (34) 
The characteristic upwind scheme for which B,, 1/2 = I Aj, is obtained by substituting 
Aj+1,2 = TAT-' ,  A f + l , z  = TA'T-l. Then ao, a l ,  and az are determined from the three equa- 
tions 

a0 + Crl& -k az1: = I&[, k = 1, 2, 3 

The same representation remains valid for three-dimensional flow because Aj, 1/2 still has only 
three distinct eigenvalues u, u' + c, u - c. 

3.2. Analysis of stationary discrete shocks 

The structure of stationary discrete shocks will now be examined under the assumption that the 
diffusive flux has the form (33).  Denote the left and right states by subscripts L and R. The general 
shock jump condition for a moving shock is 

fR -fL = S(wR - WL) 

where S is the shock speed. Introducing the Roe linearization between the states wL and wR, let 
ALR(wL, wR) be a mean Jacobian matrix with the property that 

f~ - f ~  = ALR(wR - WL) 

Then the shock speed S is an eigenvalue of ALR, and wR - wL is the corresponding eigenvector. In 
the case of a stationary shock S = 0, the eigenvalues of ALR are u, u + c and u - c, and if u > 0 
only the eigenvalue u - c can be zero. It follows that when u and c are calculated by equa- 
tions (27) and (28), u = c for a stationary shock. Generally, if wA is an intermediate state between 
wL and wR, and these formulas are used, then for the transition from wL to wA, u > c and for the 
transition from wA to wR, u < C. 

The model of a discrete shock which will be examined is illustrated in Figure 4. Suppose that 
wL and wR are left and right states which satisfy the jump conditions for a stationary shock, and 
that the corresponding fluxes are fL = f(wL) and fR = f(wR). Since the shock is stationary, fL = fR. 

The ideal discrete shock has constant states wL to the left and wR to the right, and a single point 
with an intermediate value wA. The intermediate value is needed to allow the discrete solution to 

I I 
I I 

I 
I 

I 
I 

I ! WL I 

' j+1 i j+2 i 
Figure 4. Shock structure for single interior point 
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correspond to a true solution in which the shock wave does not coincide with an interface 
between two mesh cells. According to equation (23), 

joLw(T)dx = [IW(O)dx + joT(fRB -fLB)dL 

where fLB and fRB at the fluxes at the left and right boundaries. Assuming that the .boundary 
conditions are compatible with a steady solution containing a stationary shock, the location x, of 
the shock is fixed by this equation, since 

j Iw(T)dX = X,WL + ( L  - x,)wR 

Thus, Cjwj(7') has a value which is determined by the initial and boundary conditions. In general, 
it is nut possible for this value to be attained by a discrete solution without an intermediate point, 
because then the sum would be quantized, increasing by A2(wR - wL) whenever the shock 
location is shifted one cell to the right. 

Three diffusion models of varying complexity which belong to the class defined by equa- 
tion (34) are examined in the following paragraphs to determine their ability to support the ideal 
shock structure containing a single interior point. These correspond to one, two or three terms in 
equation (34). 

3.2.1. Case I :  Scalar Diflusion. The first model is simple scalar diffusion with B j + 1 , 2  = I and 
1 dj+ 1 j 2  = 'Taj+ l / Z ( w j +  I - wj) 

Consider the equilibrium in the cell immediately to the right of the shock. Using subscripts AR 
and RR to denote the values at the cell boundaries, the outgoing flux is 

hRR = 3 ( f R  +fR) - 3 u R R C w R  - wR) =fR 

while the incoming flux is 

h A R  = &(fR + f A )  - 3 u A R ( w R  - w A )  

For equilibrium these must be equal. It follows that 

f~ -fA + QR(WR - W A )  = 0 

This is the Hugoniot condition for a shock moving to the left with a speed CLAR. Introduce a Roe 
linearization with a mean Jacobian matrix A A R ( w A ,  wR) such that 

f~ - f ~  = AAR(WR - W A )  

Then wR - wA is an eigenvector of A A R  corresponding to the eigenvalue - a A R .  The eigenvalues 
of A A R  are u, u + c and u - c. If we consider flow to the right with u > 0, and u < c, a solution 
with positive numerical diffusion is obtained by taking uAR = Iu - cI. Then the intermediate value 
wA must lie on a Hugoniot curve defined by the right state wR. 

When the corresponding equilibrium is considered for a cell immediately to the left of a shock 
wave in a flow moving to the left, it is found that the diffusion coefficient should be 1u + cI. Both 
cases can be satisfied by taking a = min(lu + cI, Iu - cl). In the neighbourhood of a stagnation 
point the accuracy can be improved by taking c1 proportional to u to prevent the numerical 
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diffusion becoming undesirably large. This suggests the strategy of using a diffusion coefficient 
proportional to the smallest eigenvalue, or 

a j + 1 / 2  = mpI&I 

where & are the eigenvalues u, u + c, and u - c of A j +  To prevent the scheme from admitting 
stationary expansion shocks which would violate the entropy conditions, the diffusion coefficient 
may be redefined as 

aj+ l j 2  = min ;Ik (36) k 

where 

and E is a positive threshold proportional to c. The usual strategy in schemes using scalar 
diffusion has been to make the diffusion coefficient proportional to the maximum eigenvalue of 
the Jacobian matrix df/do, in order to make sure that the numerical viscosity for each character- 
istic variable is large enough to satisfy the positivity condition. Numerical tests with the 
alternative strategy of using the smallest eigenvalue confirm that very sharp discrete shocks are 
obtained, and that the scheme is robust with a viscosity threshold of the type defined by 
equation (37). 

To determine whether scalar diffusion can exactly support an ideal discrete shock it is also 
necessary to examine the equilibrium in the cell immediately before the shock. In this case the 
numerical fluxes are 

~ L L  = f L  

and 
h L A  = 

For equilibrium it is necessary that 

+fL) - + ~ L A ( w A  - wL) 

f~ - f ~  - ~ L A ( W A  - WL) = 0 

which is the Hugoniot condition for a shock moving to the right with a speed a L A .  Introducing the 
Roe linearization, wA - wL must now be an eigenvector of A L A .  The transition from L to A, 
however, is less than the full jump for a stationary shock for which it is known that Roe averaging 
results in u = c. Thus, it may be expected that u > c, and the choice a L A  = u - c = Iu - C I  could 
still allow the equilibrium condition to be satisfied. Then wA lies on a Hugoniot curve defined by 
the left state wL. 

The question now arises whether an intermediate state wA can be found that simultaneously lies 
on Hugoniot curves defined by the left and right states wL and wR, where these two states 
themselves satisfy the Hugoniot condition for a steady shock. It turns out that this is not possible. 
Let u = l /p  be the specific volume. Then all possible shocks connecting wL and wR must satisfy the 
Hugoniot relation 

(38) 
Y - 1  

2 PRUR - PLUL = - (PR + PL)(UL - U R )  
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This establishes a locus on a p-u diagram of a family of shocks as the shock speed is varied. The 
single point shock structure requires wA to lie on the Hugoniot curves defined by wL and wR. The 
curve defined from wL is 

while the curve from wR is 

(40) Y-1 
PRUR - PAUA = 7 (PR + PA)(UA - V R )  

These intersect only when wA = wR or wL. To prove this note that (38) can be written as 

P R U R  - PLVL = ~ ( P R O L  - PLUR) 

where CI = (y - 1)/(y + 1). Similarly (39) and (40) yield 

UR - @UA 

UA - C(vR 

- UL - CIuA 

UA - CIuL 
- PR- P A =  PL- 

Thus, vA satisfies a quadratic equation. Substituting from equation (41) this can be reduced to 

(PR - PL)(UA - UR)(UA - UL) = 0 

If pL # pR this has only the solutions uA = uL or vA = uR. Therefore, it is concluded that scalar 
diffusion cannot support a perfect discrete shock with a single interior point. Calculations of 
one-dimensional flows reveal an oscillation of very small amplitude upstream of the shock. In 
multidimensional flows, however, these oscillations are essentially imperceptible. 

3.2.2. Case 2: characteristic upwind scheme. The second case to be examined is the upwind 
scheme which results from characteristic decomposition, with B j +  1/2  = IAl j +  l i 2 .  This case has 
been studied by Roe,41 and it is known that the upwind scheme admits ideal shocks. Assuming 
flow to the right with u > 0, the fluxes in the cell to the right of the shock are now 

hRR = fR 

and 
hAR = : ( f ~  + f ~ )  - ~ ~ A A R I ( W R  - WA) 

yielding equilibrium if 

(AAR - IAARI)(wR - wA) = T(A - IAOT-'(wR - wA) = 0 

With u < c this is satisfied by the negative eigenvalue u - c, and since wR - wA is the correspond- 
ing eigenvector, the Hugoniot equation 

f R  - f A  = s(wR - wA) 

is satisfied for the shock speed S = u - c. Thus, wA again lies on a Hugoniot curve. At the 
entrance to the shock the transition from wL to wA is less than the full transition from wL to wR for 
which u = c. Thus, a structure is admitted in which u > c in the transition from L to A, with the 
consequence that the flux is calculated from the upwind state 

hLA = t ( f A  +fL) - 3ALA(wL - wA) =fL 

and equilibrium is maintained. 
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3.2.3. Case 3: convective upwind and split pressure (CUSP)  scheme. Characteristic decomposi- 
tion allows equilibrium to be established through full upwinding of the flux entering the 
transition layer, while the flux leaving the transition layer satisfies a Hugoniot equation. This can 
also be accomplished by a less complex scheme. Suppose that the diffusive flux is defined as 

dj+ 112 = ia*c(wj+ 1 - wj) + i P ( f j +  1 -h) 
where the factor c is included so that a* is dimensionless. Let M be the Mach number u/c. If the 
flow is supersonic an upwind scheme is obtained by setting 

a* = 0, f l =  sign(M) 

Introducing the Roe linearization, the Mach number is calculated from u and c, and at the 
entrance to the shock a transition to an intermediate value wA is admitted with u > c and 

hLA = t (fA +fL) - 9 ( f A  - f L )  = f L  

The fluxes leaving and entering the cell immediately to the right of the shock are now 

f R R  = f R  

and 
h A R  = i (fR +fA) - ia*c(wa - wA) - f P ( f R  -fA) 

These are in equilibrium if 

This is the Hugoniot equation for a shock moving to the left with a speed tl*c/(l + f l ) .  Also, 
introducing the Roe linearization, 

Thus, wR - wA is an eigenvector of ARA and - a*c/(l  + 8) is the corresponding eigenvalue. Since 
the eigenvalues are u, u + c and u - c, the only choice which leads to positive diffusion when 
u > 0 is u - c, yielding the relationship 

tl*c = (1 + P)(c - u), 0 < u < c 

Thus, P is uniquely determined once a* is chosen, leading to a one-parameter family of schemes. 
The choice = M corresponds to the Harten-Lax-Van Leer (HLL) ~ c h e m e , ~ ~ , ~ ~  which is 
extremely diffusive. 

The term P(fR -fA) contributes to the diffusion of the convective terms. Suppose that the 
convective terms are separated by splitting the flux according to equations (30)-(32). Then the 
total effective coefficient of convective diffusion is 

tlc = a*c + flu 
The choice ac = ii leads to low diffusion near a stagnation point, and also leads to a smooth 
continuation of convective diffusion across the sonic line since a* = 0 and = 1 when JMI > 1. 
The scheme must also be formulated so that the cases of u > 0 and u < 0 are treated symmetric- 
ally. Using the notation M = u/c, 2' = u f c, this leads to the diffusion coefficients 

= /MI (42) 
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1 +max (0, s) i f O < M < l  

Near a stagnation point a may be modified to a = 4 ( E  + I MI2/&) if IMI is smaller than a threshold E.  

3.2.4. Criteria for a single point shock. The analysis of these three cases shows that a discrete 
shock structure with a single interior point is supported by artificial diffusion that satisfies the two 
conditions that 

1. it produces an upwind flux if the flow is determined to be supersonic through the interface, 
2. it satisfies a generalized eigenvalue problem for the exit from the shock of the form 

(AAR - ~ARBARMWR - WA) = 0 

where A,, is the linearized Jacobian matrix and B A R  is the matrix defining the diffusion for the 
interface AR. These two conditions are satisfied by both the characteristic and CUSP schemes. 
Scalar diffusion does not satisfy the first condition. 

3.3. CUSP scheme admitting constant total enthalpy in steady JEow 

In steady flow the stagnation enthalpy H is constant, corresponding to the fact that the energy 
and mass conservation equations are consistent when the constant factor H is removed from the 
energy equation. Discrete and semi-discrete schemes do not necessarily satisfy this property. In 
the case of a semi-discrete scheme expressed in viscosity form, equations (24) and (25), a solution 
with constant H is admitted if the vicosity for the energy equation reduces to the viscosity for the 
continuity equation with p replaced by p H .  When the standard characteristic decomposition (29) 
is used, the viscous fluxes for p and p H  which result from composition of the fluxes for the 
characteristic variables do not have this property, and H is not constant in the discrete solution. 
In practice there is an excursion of H in the discrete shock structure which represents a local heat 
source. In very high-speed flows the corresponding error in the temperature may lead to a wrong 
prediction of associated effects such as chemical reactions. 

The source of the error in the stagnation enthalpy is the discrepancy between the convective 
terms 

in the flux vector, which contain p H ,  and the state vector which contains p E .  This may be 
remedied by introducing a modified state vector 
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Then one introduces the linearization 

f R  - f L  = Ah(Wh,  - w h , )  

Here Ah may be calculated in the same way as the standard Roe linearization. Introduce the 
weighted averages defined by equations (27) and (28). Then 

The eigenvalues of Ah are u, A+ and 2-  where 

Note that 1' and 2- have the same sign as u + c and u - c, and change sign at the sonic line 
u = f c. The diffusive flux is now expressed as 

d j + 1 / 2  = + U * C A W h  + 4BAf 

where A denotes the difference fromj + 1 to j .  Now the scheme can be analysed in the same way 
as before. Again equilibrium at the entrance is established by upwinding, while equilibrium at the 
exit requires 

Therefore, - @*c/( 1 + B) must be an eigenvalue of Ah, and in the case u > 0, positive diffusion is 
obtained by taking 

a*c = - (1 + P ) d -  

Now the split is redefined as 

f = uwh + f p  

where 

and the diffusive flux can be expressed as 

d j+  l j z  = 4 a C A W h  + D w h A U  + PAf, 

Then a and are defined as before by equations (42) and (43), using the modified eigenvalues A* 
defined by equation (44). This splitting corresponds to the Liou-Steffen splitting." The splitting 
in which the convective terms contain p E  corresponds to the wave-particle ~ p l i t t i n g . ~ ~ * ~ *  The two 
variations may conveniently be distinguished as the E-CUSP and H-CUSP schemes. 
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3.4.  Implementation of limiters for  the CUSP scheme 

In the case of a scalar conservation law, high-resolution schemes which guarantee the preserva- 
tion of the positivity or monotonicity of the solution can be constructed by limiting the action of 
higher order or anti-diffusive terms, which might otherwise cause extrema to grow. Typically 
these schemes, such as both the symmetric and upstream limited positive (SLIP and USLIP) 
schemes, compare the slope of the solution at nearby mesh intervals. The characteristic upwind 
scheme essentially applies the same construction to the characteristic variables, so that the 
solution is subject to controls on the formulation or growth of extrema of these variables. The 
fluxes appearing in the CUSP scheme have different slopes approaching from either side of the 
sonic line, and use of limiters which depends on comparisons of the slopes of these fluxes can lead 
to a loss of smoothness in the solution at the entrance to a supersonic zone. 

An alternative formulation which avoids this difficulty, and which may be used with either the 
characteristic upwind or the CUSP scheme, is to form the diffusive flux from left and right states 
at the cell interface. These are interpolated or extrapolated from nearby data, subject to limiters to 
preserve monotonicity, in a similar manner to the reconstruction of the solution in Van Leer’s 
MUSCL scheme.27 Let w ( ~ )  denote the kth element of the state vector w. Now define left and right 
states for each dependent variable separately as 

where 
Awj+ 1/2 = wj+ 1 - wj 

and L(u, 21) is a limited average with the properties defined in Section 2.3. Then 

w ( k )  R - w:) = A W ~ ;  1,2 - L ( A w ~ ~ ~ , ~ ,  A w ~ !  1,2) 

and in the case of a scalar equation the SLIP scheme is recovered by making the diffusive flux 
proportional to this difference. To implement the CUSP scheme the pressures pL and pR for the 
left and right states are determined from w L  and w R .  Then the diffusive flux is calculated by 
substituting wL for w j  and wR for wj+ to give 

d j +  112 = ta*c(wR - w L )  + f B ( f ( w R )  - f ( w L ) )  

Similarly the characteristic upwind scheme may be implemented by calculating A j +  1,2 from 
wR and w L .  

4. TIME STEPPING SCHEMES AND CONVERGENCE ACCELERATION 
FOR STEADY-STATE CALCULATIONS 

4.1. Multistage time stepping schemes 

The discretization of the spatial derivatives reduces the partial differential equation to a semi- 

(45) 
where w is the vector of flow variables at the mesh points, and R(w) is the vector of the residuals, 
consisting of the flux balances augmented by the diffusive terms. In the case of a steady-state 

discrete equation which may be written in the form 

dw/dt + R(w) = 0 
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calculation the details of the transient solution are immaterial, and the time stepping scheme may 
be designed solely to maximize the rate of convergence. 

If an explicit scheme is used, the permissible time step for stability may be so small that very 
large number of time steps are needed to reach a steady state. This can be alleviated by using time 
steps of varying size in different locations, which are adjusted so that they are always close to the 
local stability limit. If the mesh interval increases with the distance from the body, the time step 
will also increase, producing an effect comparable to that of an increasing wave speed. Conver- 
gence to a steady state can be further accelerated by the use of a multigrid procedure of the type 
described below. 

If one reduces the linear model problem corresponding to (45) to an ordinary differential 
equation by substituting a Fourier mode k = eipxj, the resulting Fourier symbol has an imaginary 
part proportional to the wave speed, and a negative real part proportional to the diffusion. Thus, 
the time stepping scheme should have a stability region which contains a substantial interval of 
the negative real axis, as well as an interval along the imaginary axis. To achieve this it pays to 
treat the convective and dissipative terms in a distinct fashion. Thus, the residual is split as 

R(w) = Q(4 + D(w) 
where Q ( w )  is the convective part and D(w) the dissipative part. Denote the time level nAt by 
a superscript n. Then the multistage time stepping scheme is formulated as 

W n + l  = W ( n + l . m )  

where the superscript k denotes the kth stage, am = 1, and 

Q(o) = Q(w"),  D(O) = D(w")  

The coefficients c tk  are chosen to maximize the stability interval along the imaginary axis, and the 
coefficients Bk are chosen to increase the stability interval along the negative real axis. 

These schemes do not fall within the standard framework of Runge-Kutta schemes, and they 
have much larger stability regions. Two schemes which have been found to be particularly 
effective are tabulated below. The first is a four-stage scheme with two evaluations of dissipation. 
Its coefficients are 

a1 = f ,  B 1  = 1 

a2 = &, p 2  = 1 
cl3 = c ,  p 3  = o  
a4 = 1, 8 4  = o  

5 
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The second is a five-stage scheme with three evaluations of dissipation. Its coefficients are 
1 

a 1  = a >  P 1  = 1 

a2 = c ,  p 2  = o  

a4=29 P 4  = o  

1 

a 3  = f ,  8 3  = 0.56 
1 

a5 = 1, P = 0.44 

(47) 

4.2. Multigrid 

Denote the grids 
by a subscript k .  Start with a time step on the finest grid k = 1. Transfer the solution from a given 
grid to a coarser grid by a transfer operator Pk,k-l ,  so that the initial state on grid k is 

The multigrid scheme is a full approximation scheme defined as follows.44- 

w(o)  - 
( k )  - P k , k -  1 w k -  1 

Then on grid k the multistage time stepping scheme is reformulated as 
w ( 4 + 1 )  = w(o)  - a,At(R!’ -I- G k )  

k 

where the residual R:’ is evaluated from current and previous values as above, and the forcing 
function Gk is defined as the difference between the aggregated residuals transferred from grid 
k - 1 and the residual recalculated on grid k .  Thus, 

Gk = Q k , k - i R ( W k - i )  - R(wp’) 

where Q k , k - l  is another transfer operator. On the first stage the forcing term Gk simply replaces 
the coarse grid residual by the aggregated fine grid residuals. The accumulated correction on 
a coarser grid is transferred to the next higher grid by an interpolation operator lk -  l , k  so that the 
solution on grid k - 1 is updated by the formula 

(0 )  wknywl = w k - 1  + I k - l , k ( W k  - wk ) 

The whole set of grids is traversed in a W-cycle in which time steps are only performed when 
moving down the cycle. 

5. NUMERICAL RESULTS 

Extensive numerical tests have been performed with a variety of schemes based on the theory 
presented in this paper. Some of these are reported in The schemes have also 
been evaluated for the treatment of viscous f l o ~ s . ’ ~ 3 ~ ’  For accurate resolution of the thin 
boundary layers which appear in flows at high Reynolds numbers, it is important to prevent their 
contamination by numerical diffusion. The schemes presented here are well suited to this purpose 
because the artificial diffusion can be made very small as the velocity approaches zero. The SLIP 
construction also prevents the appearance of overshoots in the velocity profile at high Reynolds 
numbers. The results presented here will be confined to the CUSP scheme, and are selected to 
verify the shock capturing properties of the new scheme, in which the coefficients are balanced to 
support a discrete shock structure with a single interior point. 
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5.1. One-dimensonu1 shock 

In order to verify the discrete structure of stationary shocks, calculations were performed for 
a one-dimensional problem with initial data containing left and right states compatible with the 
Rankine Hugoniot conditions. An intermediate state consisting of the arithmetic average of the 
left and right states was introduced at a single cell in the centre of the domain. With this 
intermediate state the system is not in equilibrium, and the time-dependent equations were solved 

Table I. Shock wave at Mach 20 

I 
__ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

P 

1.0000 
1 ~oo00 
1 ~m 
1 ~oooo 
1 ~m 
1 ~oo00 
1 ~oooo 
1 ~oooo 
1 .0000 
1 .0000 
1 ~oooo 
1~0000 
1~0000 
1 .oooo 
1QO00 
1.0000 
1 .0000 
1 .0000 
1 ~oooo 
1 .0000 
1 .0000 
4.1924 
5.9259 
5.9259 
5.9259 
5.9259 
5.9259 
5.9259 
5.9259 
5.9259 
5.9259 
5.9259 
5.9259 
5.9259 
5.9259 
5.9259 
5.9259 
5.9259 
5.9259 
5.9259 
5.9259 
5.9259 

U 

23.6643 
23.6643 
23.6643 
23.6643 
23.6643 
23.6643 
23.6643 
23.6643 
23.6643 
23.6643 
23.6643 
23.6643 
23.6643 
23.6643 
23.6643 
23.6643 
23.6643 
23.6643 
23.6643 
23.6643 
23.6643 

7.3248 
3.9935 
3.9935 
3.9935 
3.9935 
3.9935 
3.9935 
3.9935 
3.9935 
3.9935 
3.9935 
3.9935 
3.9935 
3.9935 
3.9935 
3.9935 
3.9935 
3.9935 
3.9935 
3.9935 
3.9935 

H 

283.5000 
283.5000 
283.5000 
283.5000 
283.5000 
283.5000 
283.5000 
283.5000 
283.5000 
283.5000 
283.5000 
283.5000 
283.5000 
283.5000 
283.5000 
283.5000 
283.5000 
283.5000 
283.5000 
283.5000 
283.5000 
283.4960 
283.4960 
283.4960 
283.4960 
283.4960 
283.4960 
283.4960 
283.4960 
283.4960 
283.4960 
283.4960 
283.4960 
283.4960 
283.4960 
283.4960 
283.4960 
283.4960 
283.4960 
283.496 1 
283.4961 
283.4961 

P 

1 ~0000 
1 ~oooo 
1 .0000 
1.0000 
1 ~oooo 
1 ~oooo 
1 ~oooo 
1 ~oooo 
1 .0000 
1 .0000 
1~0000 
1 .oOOo 
1 .OOoo 
1 .0000 
1 .om0 
1 ~OOoO 
1 .oOOo 
1 .0000 
1 ~oooo 
1 ~oooo 
1 ~OOM) 

307.4467 
466.4889 
466.4889 
466.4889 
466.4889 
466.4889 
466.4889 
466.4889 
466.4889 
466.4889 
466.4889 
466.4889 
466.4889 
4664889 
466.4889 
466.4889 
466.4889 
466.4889 
466.4889 
466.4889 
466.4889 

M 

20.0000 
20.0000 
2 0 m  
2 0 m  
2 0 ~ m  
2 0 ~ m  
2 0 ~ m  
2 0 ~ m  
20.0000 
20.0000 
2 0 m  
20.0000 
20~0000 
2 0 ~ m  
20~oooo 
20~0000 
2 0 m  
2 0 m  
2 0 ~ m  
2 0 ~ m  
2043000 
0.7229 
0.3804 
0.3804 
0.3804 
0.3804 
0.3804 
0.3804 
0.3804 
0.3804 
0.3804 
0.3804 
03804 
0.3804 
0.3804 
0.3804 
03804 
03804 
0.3804 
03804 
0.3804 
0.3804 

5 

0.0000 
O~oooO 
O-ooOO 
04nq0 
O~oooO 
O.oo00 
O~oooO 
O~oooO 
O~oooO 
0w00 
O~oooO 
O.oooO 
O~oooO 
O~oooO 
O.oo00 
O.oo00 
O~oooO 
OQOOO 
O.oo00 
O~oooO 
O~oooO 

40.3353 
37.6355 
37.6355 
37.6355 
37.6355 
37.6355 
37.6355 
37.6355 
37.6355 
37.6355 
37.6355 
37.6355 
37.6355 
37.6355 
37.6355 
3 7.6354 
37.6354 
37.6354 
37.6355 
37.6355 
37.6355 
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to find an equilibrium solution with a stationary shock wave separating the left and right states. 
Table I shows the result for a shock wave at Mach 20. This calculation used the H-CUSP scheme, 
which allows a solution with constant stagnation enthalpy. The SLIP construction was used with 
the limiter defined by equation (18), and q = 3. The table shows the values of p, u, H ,  p ,  M and the 
entropy S = log(p/py) - log(p,/p;). A perfect one point shock structure is displayed. The 
entropy is zero to 4 decimal places upstream of the shock, exhibits a slight excursion at the 
interior point, and is constant to 4 decimal places downstream of the shock. It may be noted that 
the mass, momentum and energy of the initial data are not compatible with the final equilibrium 
state. According to equation (35) the total mass, momentum and energy must remain constant if 
the outflow flux fk remains equal to the inflow flux fL. Therefore,f, must be allowed to vary 

I_ 
_. _.-. - . -... 

Figure 5. 0-topology meshes, 160 x 32 (a) RAE-2822 aerofoil; (b) NACA-0012 aerofoil 

Figure 6. RAE-2822 aerofoil at Mach 0.750 and c( = 3.0" (a) C, after 25 cycles., C, = 1.1 312, Cd = 0.0469; (b) Convergence, 
and number of supersonic points 
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according to an appropriate outflow boundary condition to allow the total mass, momentum and 
energy to be adjusted to values compatible with equilibrium. 

5.2 Aerofoil calculations 

The results of transonic flow calculations for two well-known aerofoils, the RAE 2822 and the 
NACA 0012, are presented in Figures 5-8. The H-CUSP scheme was again used with left and 
right states defined by the SLIP scheme. The limiter defined by equation (18) was used with q = 3. 
The 5 stage time stepping scheme (47) was augmented by the multigrid scheme described in 
Section 4.2 to accelerate convergence to a steady state. The scheme was simplified by replacing 
the Roe averages (27) by arithmetic averages, and using 1' = u k c in the formula (43) for p. It 
was also found that the term W,Au tends to reduce the rate of convergence to a steady state. 
Therefore, it was attenuated by the factor IpR - pL(/(IpR - psi + IpL - psi) where ps  is the 
pressure at sonic speed, and pL and pR are the pressures to the left and right. When the flow crosses 
the sonic line p s  lies between pL and pR, and this factor becomes unity. Thus, the full scheme is 
restored at a shock wave. The equations were discretized on meshes with 0-topology extending 
out to a radius of about 100 chords. In each case the calculations were performed on a sequence of 
successively finer meshes from 40 x 8 to 320 x 64 cells, while the multigrid cycles on each of these 
meshes descended to a coarsest mesh of 10 x 2 cells. Figure 5 shows the inner parts of the 160 x 32 
meshes for the two aerofoils. Figures 6-8 show the final results on 320 x 64 meshes for the RAE 
2822 aerofoil at Mach 075 and 3" angle of attack, and for the NACA 0012 aerofoil at Mach 0.8 
and 1.25" angle of attack, and also at Mach 0.85 and 1" angle of attack. In each case the 
convergence history is shown for 100 cycles, while 

i i c /'I r I 

E 

: pressure distribution is displayed after 

Figure 7. NACA-0012 aerofoil at Mach 0.800 and a = 1.25' H-CUSP scheme (a) C, after 35 Cycles. C ,  = 0.3654, 
Cd = 0.0232; (b) convergence, and number of supersonic points 
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'1 

Figure 8. NACA-0012 aerofoil at Mach 0.850 and a = 1.0" H-CUSP scheme: (a) C, after 35 cycles. C1 = 0.3861, 
Cd = 0.0582; (b) Convergence, and number of supersonic point 

Table 11. Drag coefficient on a sequence of meshes 

RAE 2822 NACA 0012 Korn aerofoil 
Mach 0.50 a3" Mach 0.50 a3" Mach 0.75 cto" 

40 x 8 00062 0.0047 0.0098 
80x 16 0.0013 0OOO8 0.00 1 7 

160 x 32 0~0000 O~OOOO 0.OOOo 

a sufficient number of cycles for its convergence. The pressure distribution of the RAE 2822 
aerofoil converted in only 25 cycles. Convergence was slower for the NACA 0012 aerofoil. In the 
case of flow at Mach 0.8 and 1.25" angle of attack, additional cycles were needed to damp out 
a wave downstream of the weak shock wave on the lower surface. 

As a further check on accuracy the drag coefficient should be zero in subsonic flow, or in 
shock-free transonic flow. Table I1 shows the computed drag coefficient on a sequence of three 
meshes for three examples. The first two are subsonic flows over the RAE 2822 and NACA 0012 
aerofoils at Mach 0 5  and 3" angle of attack. The third is the flow over the shock free Korn 
aerofoil at its design point of Mach 0.75 and 0" angle of attack. In all three cases the drag 
coefficient is calculated to be zero to four digits on a 160 x 32 mesh. 

5.3. Three-dimensional calculations for  a swept wing 

As a further test of the performance of the H-CUSP scheme, the flow past the ONERA M6 
wing was calculated on a mesh with C-H topology and 192 x 32 x 48 = 294912 cells. Figure 9 
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Figure 9. Onera M6 Wing. Mach 0.840, angle of attack 3.06", 192 x 32 x 48 mesh. CL = 0.3041, CD = 0.0131. H-CUSP 
scheme. (a) 1250 per cent span. C, = 0.2933, Cd = 0.0274; (b) 31-25 per cent span. C, = 0.3139, Cd = 0.0159; (c) 50.00 per 

cent span. C, = 0.3262, C, = 0.0089; (d) 68.75 per cent Span. C, = 0.3195m C, = 0.0026 
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shows the result at Mach 0.84 and 3.06” angle of attack. This again verifies the non-oscillatory 
character of the solution, and the sharp resolution of shock waves. In this case 50 cycles were 
sufficient for convergence of the pressure distributions. 

6. CONCLUSION 

The concept of local extremum diminishing (LED) schemes provides a convenient framework for 
the formulation of non-oscillatory shock capturing schemes for compressible flow calculations. In 
the case of scalar conservation laws the LED property can be secured by corresponding 
symmetric and upstream limited positive (SLIP and USLIP) schemes. These may be defined in 
a similar manner for both structured and unstructured meshes. Relaxation of the LED criterion 
to the less stringent criterion that the scheme should be essentially local extremum diminishing 
(ELED) allows the use of a ‘soft limiter’, which preserves second-order accuracy at smooth 
extrema. The switch in the Jameson-Schmidt-Turkel scheme can be formulated so that it reduces 
to a special case of the SLIP scheme. 

The different scalar constructions can be combined with alternate numerical fluxes to provide 
a matrix of schemes for the gas dynamic equations. The property of supporting stationary discrete 
shocks with a single interior point is shared by the characteristic and CUSP schemes. The CUSP 
scheme is computationally inexpensive, and can be formulated to allow solutions with constant 
stagnation enthalpy in steady flow. It introduces a minimum amount of numerical diffusion as the 
Mach number approaches zero. It is therefore also appropriate for viscous flow calculations in 
which it is important not to contaminate the boundary layer. 

The theoretical properties of these schemes are verified by numerical calculations of the 
one-dimensional, two-dimensional and three-dimensional flows. 
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